framatome

Severe Accident Training

Technical Support for Staff and Shift Personnel

Raising awareness by learning from the past to improve your nuclear power plant's safety in the future

Challenge

Several severe accidents with core damage have occurred in the past. Beside technical issues, these events also demonstrated operational challenges to emergency organizations, internal and external crisis communication and detrimental working conditions for field operators.

Plant operators need to be aware of these hard and soft lessons learned to support their staff in the best manner and to avoid and manage such issues in a possible future crisis situation.

Solution

We offer a comprehensive severe accident training program, based on class-room trainings as well as emergency drills.

Our trainings can be held as individual modules, as full-day or multi-day events, based on your specific needs. All Framatome instructors are recognized severe accident experts being able to address specific questions of the audience.

Classroom trainings

We offer the following classroom training modules:

- Introduction to Severe Accidents (Length about 1 hour. Introduction to the severe accident related physical/technical basics for e.g. shift personnel)
- The Accident in Fukushima Daiichi (Length about 4 hours. Discusses the expectable working conditions and personal challenges to operators and support
- The Three Mile Island Unit 2 (TMI2) Accident (Length about 4 hours. Reviews the lessons learned with respect to installed base plants - boiling water reactors and pressurized water reactors)
- The Chernobyl Disaster (Length about 3 hours. Includes a basic introduction into neutronics)
- Severe Accident Control in the EPR Reactor (Length about 4 hours. Gives a review about state-of-the-art severe accident control)

The length and technical depth of the class-room trainings can be adapted to best suit the anticipated audience.

Your performance is our everyday commitment

Customer benefits

- Improved understanding about the occurred nuclear accidents supports the personnel of a nuclear power plant to anticipate and deal with challenges unique to a severe accident
- · Efficient preparation of personnel for a worst-case scenario is a fundamental aspect of nuclear safety
- · Gaining insights in the know-how and know-why of up-to-date severe accident mitigation systems and guidance schemes allows utilities to make informed decisions about possible plant modifications

(C.2) Human Response

Situation of the operators

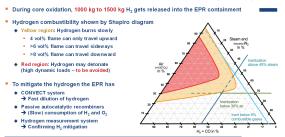
- Fear for their families (no cellphones)
 Knew about escalation into a nuclear accident
 No useable operational manual
 No guidance / never trained this situation

- ◆ Lack of suitable tools / resources Later: work in heavy protection gear in high dose rate environment
- Frequent aftershocks
- Ongoing tsunami warnings

framatome

(D.23) Unit 1 Accident Progression

Excerpts from the Fukushima course material


To ensure a long-lasting success of the classroom trainings, we recommend a subsequent emergency drill, where trainees can practically apply the theoretically acquired knowledge in a simulated environment.

The scope of drills strongly depends on the existing structures within the plant organization, such as, accessibility of simulators and implemented severe accident management procedures. Framatome offers severe-accident drills as primary organizer with shared responsibilities or to send only observers to provide you with qualified feedback.

Mostly prompt → generation life time ~1 ms = time for moderation 2 prompt ◆ Rarely delayed → generation life time ~0.1 s due to delayed neutron r ♦ Fraction of delayed neutrons is called ß 0.65% for U235 istinguish supercriticality into ↑ 1 < k < 1+ 8: delayed critical → power raise < 10% per second How one wants to operate a power reactor ♦ k > 1+ 8: prompt critical → power raise > 100% per second Risk that power excursion is too fast to stop it by injecting control rods framatome

By splitting of an U235 nucleus neutrons are emitted...

4.1) Hydrogen Mitigation

Objectives of a special severe accident training for operators

- The severe accident background education enables to anticipate an accident development and evaluate information to identify false or misleading data.
- The proper training of accident sequences enables to develop a basic understanding of relevant time periods during the progression of a severe accident.
- The ability to assess accident situation reliefs stress and enables for more focused work.
- The knowledge about radiological consequences on-site and in nearby communities enables the educated decision making about relevant actions.

Naturally, the plant staff is mostly focused on operational occurrences training. Hence, training experiences with regard to beyond design severe accident situations is often rather theoretical.

A severe accident training with our Framatome experts, who work extensively in the field of severe accident research, methodology development and accident simulations and evaluations, targets to help your crew to immerge into very extraordinary situations and to gain first-hand knowledge from our experts.

3.11) Accident Progression

- 01:13 Recirculation pumps Loop B stopped 01:40 Recirculation pumps Loop A stopped
- ♦ In accordance to the OM pump limits and precaution
 Phase separation (-50 % void in coolant)
 → Sudden breakdown of the loop flows

- Siphon-like surge line prevents drainage of PZR
 Low condensation in SG due to equal p/T
- 01:51 Loop A and B hot leg temperatures rising
- Indicates start of core exposure
 Going off-scale (> 620 F = 327°C) within 40 mins
- · Cold-leg temperatures off-scale low
- 02:15 In-core (self-powered) neutron detector readings rise rapidly

Likely effect of rising core temperatures Confused the operators further

framatome

Excerpts from Chernobyl, TMI2, and EPR course

References

- Emergency drills in Germany, Brazil, Spain, Finland and Switzerland
- Participation in several industry- and university-based educational programs
- · OECD observer mission
- · Performance of multi-week trainings of emergency organization in new-build plants

Contact: engineering-services@framatome.com www.framatome.com

It is prohibited to reproduce the present publication in its entirety or partially in whatever form without prior written consent. Legal action may be taken against any infringer and/or any person breaching the aforementioned prohibitions.

Subject to change without notice, errors excepted. Illustrations may differ from the original. The statements and information contained in this publication are for advertising purposes only and do not constitute an offer of contract. They shall neither be construed as a guarantee of quality or durability, nor as warranties of merchantability or fitness for a particular purpose. All statements, even those pertaining to future events, are based on information available to us at the date of publication. Only the terms of individual contracts shall be authoritative for type, scope and characteristics of our products and services

