



## Introduction

For more than 50 years, Framatome has designed, manufactured, integrated, installed and maintained excore neutron detectors, as well as all the related electronics (processing and packaging) and accessories (connectors, coaxial and triaxial cables).

These detectors measure the neutron flux of all types of nuclear reactors, and continuously monitor the precise power of the reactor, as well as power fluctuations and power distribution in the core of the reactor.

Excore neutron detectors are therefore essential for the safety of nuclear reactors, throughout all operating phases.

To this end, Framatome uses different detector technologies, either designed and manufactured by its teams based in Grenoble in France, or embedded in its detector assemblies.

With references on more than 120 nuclear reactors of all types across the globe and more than 50 years of experience in this field, Framatome has access to unique operating experience related to the operation of these products.

This experience also paves the way for our teams to design specific products tailored to the requirements and specialized needs of our customers around the world.



## Overview

Framatome excore neutron detectors are designed and manufactured to perform reliable measurements of the neutron flux of all types of nuclear reactors.



### **Nuclear Instrumentation System cabinets** Electronic cards and/or trains are used to

supply the detectors, and to recover and process electrical signals from them





**Electrical penetration** Not supplied by Framatome

Electrical building (BL)

#### Reactor building (BR)



#### **Neutron detectors**

Source range channels, intermediate range channels or power range channels, as required

#### Connecting plates or PPC

positioned above each well in which the detectors are located. Plates used to connect reactor building extension cables to the detectors

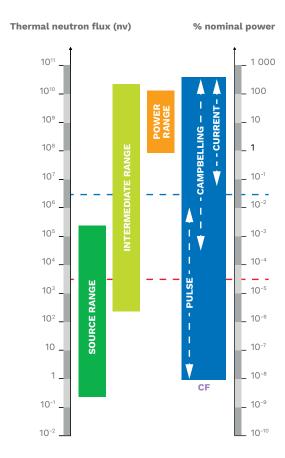


#### Connection between the cabinets and electrical penetrations

Electrical building organic cable extensions used to route electrical signals (length can be defined upon request)

#### Connection between electrical penetration and reactor building extension cables

Organic or mineral extension cables used as a function of requirements to route electrical signals (length can be defined upon request) The detectors supplied by Framatome cover the different neutron flux measurement ranges: source range, intermediate range and power range.


Depending on the measurement range, Framatome provides options for the integration of different types of excore neutron detectors:

- Boron-lined proportional counters (CPNB type), for source range measurements (low reactor power)
- Compensated boron-lined ionization chamber (CC type), for intermediate range measurements (average reactor power)
- Uncompensated boron-lined ionization chamber (CNC or CBL type), for power range measurements (full reactor power)
- Fission chamber (CFU type), for post-accident measurements

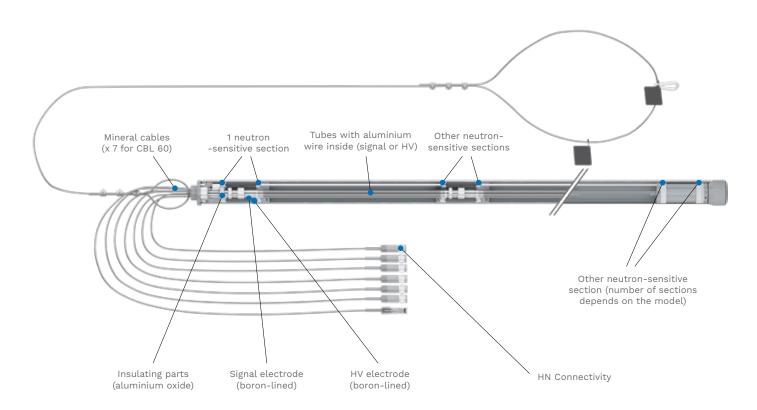
Our detectors can be adapted to all types of reactors (PWR, VVER, PHWR and research reactors). Several configurations are possible, depending on the type of reactor. Framatome has the expertise to define the most appropriate technical solution, in accordance with the requirements from the standards in force.

Framatome also designs and supplies all the qualified connections and accessories necessary for the optimal operation of the neutron detectors, from the extension cables to the connecting plates.

#### The different neutron flux measurement ranges



Several configuration options depending on customer requirements and needs.


# Advantages for the customer

Framatome excore neutron detectors use proven and reliable technologies, specifically designed for all types of nuclear reactors.

The main advantages of our excore neutron detectors are:

- A comprehensive solution, including neutron detectors; connections including cables, connectors and connecting plates, as well as signal conditioning and processing electronics, using Spinline technology
- 50-years' experience in design, expert assessment and inoperation analysis, manufacturing, qualification, installation and maintenance of neutron detectors
- Unique operating experience stemming from the operation of our detectors
- Extended lifespan of our detectors
- A solution that is tailored to customer needs thanks to our ability to design and manufacture specific solutions (detector type, cable lengths, etc.)
- Provision of long-term support for the detectors, throughout their lifespan, through diagnostics, maintenance, repair and obsolescence management solutions
- Long-term support contracts signed with our main customers, which ensure that our skills and production resources are maintained

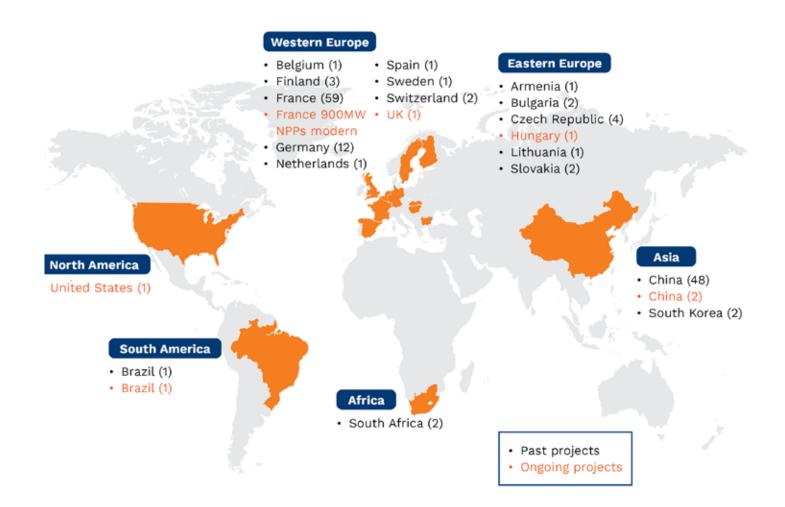




CBL60 uncompensated boron-lined ionization chamber - cross-section view

## References

Our excore neutron detectors are installed on more than 120 reactors worldwide.


Over the years, Framatome has installed its excore neutron detectors on more than 120 nuclear reactors of all types in 10 different countries, thereby ensuring the safety and operation of many reactors.

For more than 50 years, our detectors have been installed in PWR, VVER, RBMK reactors and in research reactors.

They are installed throughout the French nuclear fleet managed by EDF and on the majority of nuclear reactors in China.

This unique experience in the nuclear industry makes Framatome the ideal partner.

### Framatome Excore References



# Source/intermediate range neutron detector assemblies (CCA type)

#### **Description**

CCA-type assemblies, designed and manufactured by Framatome, are designed to accommodate one or more source or intermediate range neutron detectors, for the detection of source range or intermediate range thermal neutrons.

As such, they may include:

- Proportional counters (CPNB)
- Compensated ionization chambers (CC)
- Fission chambers (CFU), requiring specific studies

Our CCA assemblies provide up to three functions:

- The detectors and their cables are positioned in front of the core
- The detector's housing is electrically insulated from the mechanical earthing of the reactor, using insulating blocks at each end of the container
- The thermalization of incident neutrons, depending on the models

#### Main characteristics of generic references of source/intermediate range neutron detector containers

| Reference | Diameter | Height   | Max. temperature<br>(excluding accident<br>situations) | Special features                                                                                                                                                                                   |
|-----------|----------|----------|--------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CCA-12    | 172 mm   | 3373 mm  | 80°C continuous<br>/ 120°C max<br>admissible           | Insert to guide and shape the cables. Cable exit from the top of the container. Handling using lifting cable. With thermalizer and insulation. Source channel: CPNB-44 Intermediate channel: CC-80 |
| CCA-30    | 200 mm   | 4100 mm  | 80°C continuous<br>/ 120°C max<br>admissible           | Insert to guide and shape the cables. Cable exit from the top of the container. Handling using lifting rings. With thermalizer and insulation. Source channel: CPNB-44 Intermediate channel: CC-80 |
| CCA-60    | 90 mm    | 491.4 mm | 80°C continuous<br>/ 120°C max<br>admissible           | Cable exit using lights. Handling strap. With insulation - Without thermalizer. Has a single detector: CC-83 VV                                                                                    |
| CCA-61    | 90 mm    | 919 mm   | 80°C continuous<br>/ 120°C max<br>admissible           | Cable exit using lights. Handling strap. With insulation - Without thermalizer. Has a single detector: CPNB-44                                                                                     |

| General technical characteristics |                                            |                                                                  |  |  |  |
|-----------------------------------|--------------------------------------------|------------------------------------------------------------------|--|--|--|
|                                   | Metal parts                                | High-purity aluminium                                            |  |  |  |
| Material                          | Insulators                                 | Aluminium oxide or high-density polythene depending on the model |  |  |  |
| Electrical                        | Isolation resistance under 500 VDC         | ≥10° Ω                                                           |  |  |  |
| Lifting & Handling                | Weight of equipped CCA                     | 6 to 128Kg depending on the product                              |  |  |  |
| Environmental                     | Max. pressure (Containment tightness test) | 7 bar                                                            |  |  |  |

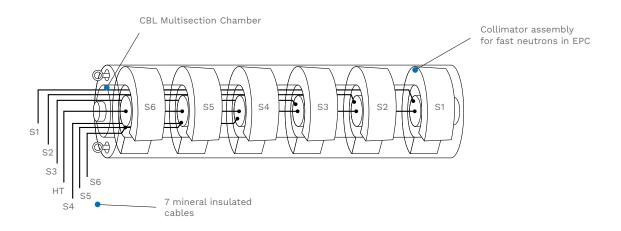
Framatome also designs customized solutions, tailored to your needs. Feel free to contact us for any specific requirements!

# Power range assemblies (EPC)

#### **Description**

Power range assemblies (EPC), designed and manufactured by Framatome, are designed to accommodate power range neutron detectors (CBL) for the detection of thermal neutrons during power operations. They can contain up to the equivalent of six uncompensated ionization chambers.

Our EPC power range assemblies provide three functions:


- The positioning of sensitive sections in front of the core
- The electrical insulation of the detector's housing from the mechanical earthing of the reactor
- The thermalization and collimation of incident neutrons

Our power range assemblies EPC make it possible to thermalize, detect fast neutrons coming from the core and stopping those coming from another direction (collimator).

This principle improves the image of the axial power distribution.

#### Main characteristics of generic references of power range assemblies (EPC)

| Reference | Diameter | Height  | Max. temperature | Use                                                |
|-----------|----------|---------|------------------|----------------------------------------------------|
| EPC-15    | 200 mm   | 3573 mm | 120°C            | Equipment dedicated to Power Range Channels        |
| EPC-60    | 200 mm   | 3960 mm | 120°C            | Collimation of fast neutrons coming from the core  |
| EPC-26    | 180 mm   | 3444 mm | 120°C            | Thermalizer Insulator  Handling using lifting ring |



Assembly of an EPC collimator

Framatome also designs customized solutions, tailored to your needs. Feel free to contact us for any specific requirements!

# Uncompensated boron-lined ionization chambers multi-section (CBL type)

#### Thermal neutron flux measurement in power range.

#### **Description**

The uncompensated boron lined ionization multi-section chambers are designed and manufactured by Framatome for the measurement of thermal neutron flux at power range on large reactor cores.

Power range detectors (CBL) are ionization chambers that typically have two or six sections sensitive to thermal neutrons Each section consists of two concentric electrodes lined with a boron coating sensitive to neutrons

Several cables are integrated in our CBL detectors:

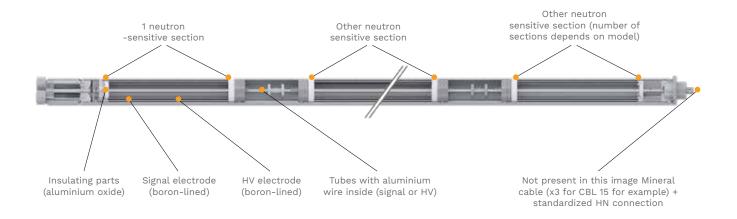
- A cable for high-voltage polarization
- The other cables to transmit the current from each of the sensitive sections (between two and six cables according to the model, one per section)

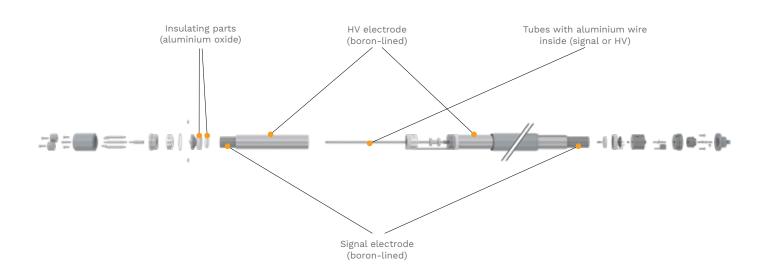
Our detectors may be fitted with a lifting sling for handling purposes.

They can be integrated into EPC-type assemblies for power range measurements.

#### Main characteristics of generic references of uncompensated ionization chambers multi-section (CBL)

| Reference | Diameter | Height  | Max. temperature (excluding accident conditions) |
|-----------|----------|---------|--------------------------------------------------|
| CBL-15    | 80 mm    | 3443 mm | 120°C                                            |
| CBL-60    | 80 mm    | 3853 mm | 120°C                                            |
| CBL-16    | 80 mm    | 3193 mm | 120°C                                            |
| CBL-26    | 80 mm    | 3353 mm | 120°C                                            |
| CBL-41    | 80 mm    | 2851 mm | 120°C                                            |


All chambers are equipped with integrated mineral insulated cables.




Framatome also designs customized solutions, tailored to your needs. Feel free to contact us for any specific requirements!

# Uncompensated boron-lined ionization chambers multi-section (CBL type)

Thermal neutron flux measurement in power range.





CBL15 uncompensated boron-lined ionization chamber - Cross-section view and exploded view

# Uncompensated boron-lined ionization chambers single-section (CNC type)

Thermal neutron flux measurement in environments with low gamma contribution.

#### **Description**

Uncompensated ionization chambers single-section (CNC) are designed and manufactured by Framatome for measuring thermal neutron flux at power range on small reactor cores

They consist of two concentric electrodes with surfaces lined with a neutron-sensitive boron coating.

Two cables are included in our detectors:

- A cable for high-voltage polarisation
- A cable to transmit the current collected by the signal electrode

Main characteristics of generic references of uncompensated ionization chambers CNC-50

| Reference | Diameter | Height | Max. temperature (excluding accident conditions) |  |
|-----------|----------|--------|--------------------------------------------------|--|
| CNC-50    | 49 mm    | 476 mm | 120°C                                            |  |



Uncompensated boron-lined ionization chamber CNC50 - cross-section view

Framatome also designs customized solutions, tailored to your needs. Feel free to contact us for any specific requirements!



# Compensated ionization chamber (CC type)

#### Thermal neutron flux measurement with compensation for gamma background noise.

#### **Description**

Boron coated compensated ionization chambers are designed and manufactured by Framatome for the measurement of thermal neutron flux with gamma background compensation. They are used at the intermediate power range and deliver a signal for a thermal neutron flux typically in the range of 10<sup>2</sup> to 10<sup>10</sup> n/cm<sup>2</sup>/s.

The detector is made up of three electrodes forming two separate ionization chambers, with a common electrode to collect the charges. The surfaces of the first chamber are coated with a boron coating, it is sensitive to thermal neutrons and gamma rays. The surfaces of the second chamber have no coating, it is only sensitive to gamma radiation.

These two chambers are polarized with opposite voltages so that the common electrode delivers a current equal to the subtraction of the currents of the two chambers. By adjusting the compensation voltage on the gamma chamber, a large part of the signal induced by the gamma radiation is suppressed.

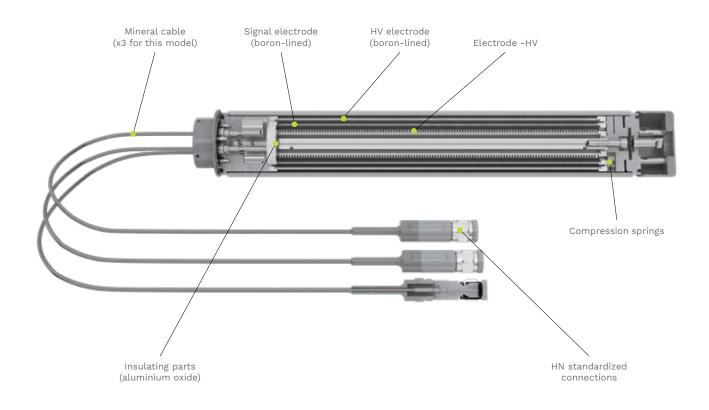
Three cables are incorporated into the detector:

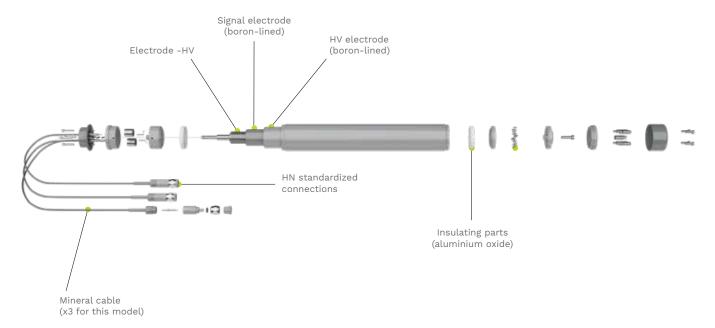
- Two cables for high-voltage polarization
- A cable to transmit the collected current

A compensated ionization chamber can be integrated in a CCA-type assembly.

#### Main characteristics of generic references of compensated ionization chambers

| Reference | Diameter | Diameter Height |       |
|-----------|----------|-----------------|-------|
| CC-80     | 80 mm    | 573 mm          | 120°C |
| CC-83 VV  | 84 mm    | 296 mm          | 120°C |


For all our references, the cable lengths can be customized.




Framatome also designs customized solutions, tailored to your needs. Feel free to contact us for any specific requirements!

# Compensated ionization chamber (CC type)

Thermal neutron flux measurement with compensation for gamma background noise.





# Boron coated proportional counter (CPNB type)

Measurement of thermal neutron flux in the presence of a limited gamma dose rate.

#### Description

Proportional counters are neutron detectors, consisting of a cathode, an anode and neutron-sensitive material.

Boron deposition proportional counters have a good neutron sensitivity and have good gamma radiation influenceability characteristics. They are used at the source level.



**Proportional counter** 

Range of proportional counter characteristics, integrated into our CCA type containers

| Reference                              | Diameter                   | Height                   | Max. temperature (excluding accident conditions) |  |
|----------------------------------------|----------------------------|--------------------------|--------------------------------------------------|--|
| Boron-lined proportional counter range | from 25.4<br>mm to 76.5 mm | from 394<br>mm to 761 mm | 200°C                                            |  |

Upon request, Framatome can conduct studies for their integration into CCA-type containers for neutron measurement at source level.



# Fission chambers (CFU-Type)

#### Multi-mode neutron flux measurement in normal and post-accident conditions.

#### **Description**

Fission chambers are ionization chambers coated with enriched uranium. They can measure the neutron flux over a wide range by delivering signals in three forms: pulses, current and campbelling. They can be used at three ranges of power: source, intermediate and power.

They are caracterized by their small influenceability to gamma radiation and therfore have a remarkable ability to operate under normal, accidental and post-accidental conditions. They easily discriminate between neutrons and gammas, in pulse and campbelling mode



Fission chamber

#### Range of fission chamber characteristics, integrated into our CCA type containers

| Reference | Diameter             | Height                 | Max. temperature (excluding accident conditions) |  |
|-----------|----------------------|------------------------|--------------------------------------------------|--|
| FC range  | from 6.2 mm to 89 mm | from 45.5 mm to 700 mm | from 140°C to +550°C                             |  |

Upon specific request, Framatome can conduct studies for their integration into CCA-type containers for neutron measurement at source level.



A set of qualified connections and accessories for optimal operation of neutron detectors.

#### **Description**

Framatome studies, designs and supplies all connection accessories used to connect our excore neutron detectors to the measuring electronics, whether they are:

- Integrated cables
- Connecting plates (PPC)

- Mineral, coaxial or triaxial cables, or organic cables for reactor building signals
- Organic cables to transmit signals to the cabinets in the electrical building

#### Separate equipment available

| Type of equipment Use                                   |                                                          | Characteristics                                                                                 |
|---------------------------------------------------------|----------------------------------------------------------|-------------------------------------------------------------------------------------------------|
| Connection plate neutron detector signals at the top of |                                                          | Dimensions in accordance with customer's request Cable clamp of any diameter Insulating flanges |
| Connectors and penetrations                             | For reactor building and electrical building connections | Male or female Option: leaktight connection                                                     |
| Tool box                                                | For the maintenance of detectors and cables              | Tools dedicated to connector assembly Tools for removing the seals                              |
| Consumables For the maintenance of detectors at cables  |                                                          | Tape and insulating ducts                                                                       |

#### Standard configurations

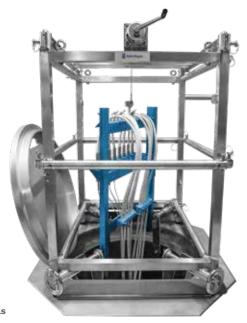
|                           |          |                               |                                | Reactor                                 |                                |                   | If auxitrol p                       | enetration          |                                   | Female                                   |                            |  |
|---------------------------|----------|-------------------------------|--------------------------------|-----------------------------------------|--------------------------------|-------------------|-------------------------------------|---------------------|-----------------------------------|------------------------------------------|----------------------------|--|
| Type<br>of train          | Detector | Connecting<br>plates<br>(PPC) | Male<br>connector              |                                         | Electric<br>penetration        | Male<br>connector | Electrical<br>building<br>extension | Male<br>connector   | penetration<br>(cabinet<br>level) | Strap<br>(internal<br>cabinet)           |                            |  |
|                           | Standard | Specific                      | Standard                       | Standard                                | Standard                       |                   | Standard                            | Standard            | Standard                          | Standard                                 | Standard                   |  |
|                           |          |                               |                                | ion cable for s<br>vith hexagon c       |                                |                   |                                     |                     |                                   |                                          |                            |  |
|                           |          | Triax PPC                     |                                | ax source rang<br>ting hexagon c        |                                |                   | 6-knurled                           | oax impulse<br>Coax | 6-knurled                         | Leaktight<br>female<br>penetration<br>HN | 6-side<br>impulse<br>strap |  |
| CNS                       | CPNB44   | Coax PPC<br>ELSA PPC          | 6-knurled<br>coax<br>connector | Organic<br>impulse<br>Coax<br>connector | 6-knurled<br>coax<br>connector | cc                | coax<br>connector                   |                     | coax<br>connector                 |                                          |                            |  |
|                           | CC80     |                               | Triax current                  | extension wit                           | h connectors                   | -                 | t provided 6-knurled coax connector |                     |                                   |                                          |                            |  |
| Intermediate              | CC83     | Triax PPC                     | Mineral coa                    | x current with                          | connectors                     |                   |                                     | coax organic        | 6-knurled                         | Leaktight female                         | e 6-side                   |  |
| range<br>channel          | CC54     | Coax PPC<br>ELSA PPC          | 6-knurled<br>coax<br>connector | Coax<br>organic<br>current              | 6-knurled<br>coax<br>connector |                   |                                     |                     | coax<br>connector                 | penetration<br>HN                        |                            |  |
|                           | CBL60    |                               | Mineral co                     | ax current wit                          | h hexagon                      |                   |                                     |                     |                                   |                                          |                            |  |
| Power<br>range<br>channel | CBL15    | CBL15 Triax PPC<br>Coax PPC   | Triax currer                   | nt extension w<br>connectors            | ith hexagon                    |                   | 6-knurled<br>coax<br>connector      | coax organic        | 6-knurled<br>coax<br>connector    | Leaktight<br>female<br>penetration       | 6-side<br>current<br>strap |  |
|                           | CBL26    | ELSA PPC                      | 6-knurled<br>coax<br>connector | Coax<br>organic<br>current              | 6-knurled<br>coax<br>connector |                   |                                     |                     |                                   | penetration<br>HN                        |                            |  |

Framatome also designs customized solutions, tailored to your needs. Feel free to contact us for any specific requirements!

Connection plate (PPC): To hold the neutron detector cables and ensure their connection at the top of the reactor pit.

#### **Description**

The connection plate ensures the connection between the integrated cables in the excore neutron detector and the cables used to exit the reactor building, as well as their mechanical maintenance in the pit.


Depending on the type of detectors and the type of plant, the connecting plates differ in general size and the number of HN penetrations.

Technical characteristics of connecting plates (coaxial / triaxial), for power channel (EPC type) and for source/intermediate channels (CCA type)

|               | General technical characteristic                                | cs                                |  |
|---------------|-----------------------------------------------------------------|-----------------------------------|--|
|               | Frame - Mechanical structure                                    | Stainless steel                   |  |
|               | Clamp - Metal parts                                             | Stainless steel                   |  |
| Material      | Clamp - Insulating                                              | Epoxy resin                       |  |
|               | Connector - Metal parts                                         | Stainless steel                   |  |
|               | Connector - Insulating                                          | Aluminium oxide                   |  |
|               | Outline dimensions                                              | Depending on the pits on plant    |  |
| Mechanical    | Weight                                                          | Between 8Kg and 18Kg              |  |
| Mechanicat    | Type of leak-tight connection                                   | Female HN                         |  |
|               | Number of connections                                           | Depending on the type of detector |  |
| Electrical    | Cable core/shielding isolation (on HN penetration) under 500 VD | ≥10 <sup>12</sup> Ω               |  |
|               | Isolation of shielding/earth under 500 VDC                      | ≥10 <sup>10</sup> Ω               |  |
|               | Max. temperature in continuous operation                        | 80°C                              |  |
|               | Max. occasional temperature                                     | 120°C                             |  |
| Environmental | Max. pressure (Containment tightness test)                      | 7 bar                             |  |
|               | max gamma flux                                                  | 1000 Gy/h                         |  |
|               | Max gamma exposure                                              | 10° Gy                            |  |



Framatome also designs customized solutions, tailored to your needs. Feel free to contact us for any specific requirements!



#### Coaxial, minerals/organic extension cables.

#### **Description**

Our excore neutron detectors are connected to the measuring electronics through their integrated cables, mineral cables used to take signals out of the reactor building to the cabinets and organic cables to transmit the signals in the electrical building to the cabinets.

Depending on their length, the extension cables:

- Cross the entire reactor building, from the connection plate to the containment penetration
- Cross the conduit at the reactor pit exit. They facilitate maintenance in areas with high temperatures and radiation conditions

Our coaxial mineral extension cables:

- Are free of organic material and therefore have exceptional resistance to temperature and radiation
- Are used for signal output, regardless of whether they are impulse or current signals

They are designed and supplied by Framatome as a kit or pre-

Main characteristics of generic references of coaxial extension cables, organic or mineral,

| Reference                                   | Cable type                                                                                 | Max.<br>temperature<br>(excluding<br>accident<br>conditions) | Use                                                                                                                             |
|---------------------------------------------|--------------------------------------------------------------------------------------------|--------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|
| CP-597                                      | Coaxial organic cable<br>Antimicrophonic<br>Non flame propagation<br>Irradiation qualified | 80°C                                                         | Transmission of signals from neutron detectors in the electrical building                                                       |
| CP-711                                      | Coaxial organic cable<br>High resistance to disturbances<br>Non flame propagation          | 80°C                                                         | Transmission of signals from neutron detectors in the electrical building                                                       |
| CZ-24                                       | Coaxial organic cable<br>Antimicrophonic<br>Non flame propagation<br>Irradiation qualified | 80°C                                                         | Transmission of signals from neutron detectors in the reactor building                                                          |
| Mineral<br>extension<br>cable<br>1ZsAcCAc40 | Extended coaxial cable with mineral insulation                                             | 80°C                                                         | Extension cable for high dose rate areas in the reactor building Recommended for Intermediate and Power range neutron detectors |
| Mineral<br>extension<br>cable<br>1CCFAc40   | Extended coaxial cable with mineral insulation                                             | 80°C                                                         | Extension cable for high dose rate areas in the reactor building Recommended for Source range neutron detectors                 |
| Mineral<br>extension<br>cable<br>1ZsAcCAc40 | Coaxial transmission cable with mineral insulation, long length                            | 80°C                                                         | Transmission of signals from Intermediate and Power range Channel from the reactor pit to the electrical building               |
| Mineral<br>extension<br>cable<br>1CCFAc40   | Coaxial transmission cable with mineral insulation, long length                            | 80°C                                                         | Transmission of signals from the Source Range<br>Channels, from the reactor pit to the electrical building                      |

#### Extension cable, triaxial minerals.

#### Main characteristics of extension, minerals, triaxial cables

| General technical characteristics |                                                                                        |                      |
|-----------------------------------|----------------------------------------------------------------------------------------|----------------------|
| Material                          | Cable - Outdoor duct                                                                   | Stainless steel      |
|                                   | Cable joint - Metal parts                                                              | Stainless steel      |
|                                   | Cable joint - Insulating                                                               | Aluminium oxide      |
|                                   | Connectors - Metal parts                                                               | Stainless steel      |
|                                   | Connector - Insulating                                                                 | Aluminium oxide      |
| Mechanical                        | Leaktight connection                                                                   | Male HN or female HN |
|                                   | Minimum static bend radius.                                                            | 50 mm                |
|                                   | Maximum 30° bend area from the front end of the connector                              | 250 mm               |
|                                   | Weight                                                                                 | 150 gr/m             |
| Electrical                        | Insulation resistance between the conductor and the coaxial shield under 500 VDC       | ≥10 <sup>12</sup> Ω  |
|                                   | Insulation resistance between the coaxial shield and the triaxial shield under 500 VDC | ≥ 10 <sup>6</sup> Ω  |
| Current                           | Line resistance                                                                        | < 0,2 Ω/m            |
|                                   | Linear capacity                                                                        | 160 pF/m             |
|                                   | Impedance                                                                              | 30 Ω                 |
| Pulse                             | Line resistance                                                                        | < 0,1 Ω.m            |
|                                   | Linear capacity                                                                        | 106 pF/m             |
|                                   | Impedance                                                                              | 50 Ω                 |
| Geometric                         | Triaxial shielding diameter                                                            | 5 mm                 |
|                                   | Minimum length                                                                         | 1 M                  |
|                                   | Maximum length                                                                         | 80 M                 |
|                                   | Diameter on cable joints                                                               | 12 mm                |
| Environmental                     | Maximum temperature in continuous operation                                            | 80°C                 |
|                                   | Maximum occasional temperature                                                         | 120°C                |
|                                   | Maximum pressure (Containment tightness test)                                          | 7 bar                |
|                                   | Maximum gamma dose rate                                                                | 1000 Gy/h            |
|                                   | Maximum gamma dose                                                                     | 10° Gy               |
|                                   | Maximum relative humidity                                                              | 100% with runoff     |
|                                   | Resistance to borated water run-off                                                    | Very good            |
|                                   | Accident conditions (current only)                                                     | K1 profile (24h)     |

# Nuclear qualification

All our detectors are designed to meet the qualification requirements in accordance with international standards and the required operating conditions.

Our detectors have been approved by the safety authorities of various countries, such as Belgium, Bulgaria, China, the Czech Republic, France, India, South Africa, South Korea and Spain.

#### **Standards**

Our neutron detectors comply with the following standards:

- RCC-E: Rules for the design and construction of electrical equipment for nuclear islands
- IEEE 323: IEEE standard for the qualification of IE-class electrical equipment for nuclear power plants
- IEEE 344: IEEE procedure recommended for seismic qualification of class 1E equipment for nuclear power plants
- IEC Standards: Basic climatic and mechanical robustness tests (IEC 60068-1, IEC 60068-2-2, IEC 60068-2, IEC 60068- 2-6, IEC-60780-323, IEC-60980-344, IEC-60515)

#### **Qualification displayed (RCCE)**

- All products outside reactor building: K3
- All products inside reactor building: K2 mini
- All intermediate range channel-related products in the reactor building: K1-24h

#### **Safety classification**

All products conducting a signal/voltage: IPS-1E.

#### Triaxial extension cables

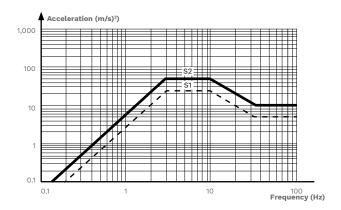
They are qualified according to RCC-E 2005 and according to standards IEC 60068-2-2, IEC 60068-2-6, IEC 60068-2-30.

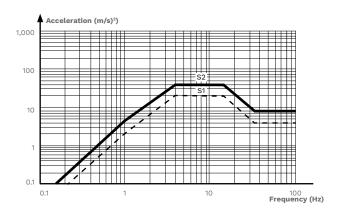
The extensions dedicated to current transmission are qualified K1 or K2 (RCCE). The extensions dedicated to transmission in impulse mode are also qualified K2 (RCCE).

#### **Quality management**

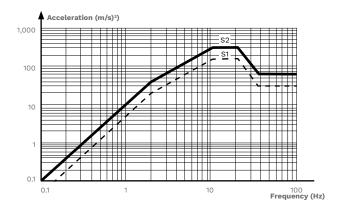
Our neutron detectors are manufactured as part of a quality management system in accordance with the standards below.

- Quality management system (ISO9001):
  - IAEA GS-R-3: plant and activity management system safety specifications
  - NRC 10CFR part 50 Appendix B quality assurance criteria for nuclear power plants and fuel removal
  - NRC 10 CFR part 21 information on non-conformities and defects
  - ANSI/ ASME NQA-1: quality assurance program requirements for nuclear plants
  - AFCEN RCC series- A5000: quality assurance
  - NQSA NSQ-100: Nuclear safety and quality management system - requirements
- Environment:
  - ISO 14001: environmental management system requirements
- Radiation protection:
  - CEFRI SPE-E-0400 CEFRI specification "E" relating to companies employing category A or B personnel working in nuclear plants


Framatome is able to carry out qualifications and justifications adapted to your needs. Do not hesitate to contact us for your specific needs.


#### **Seismic tests**

Example of tests carried out on our neutron detectors:


- Five cycles on S1 (seismic spectrum for any project horizontal spectra): biaxial test on horizontal OX/OZ and vertical OX/OY axes
- One cycle on S2 (seismic spectrum of any project vertical spectra): biaxial test on horizontal OX/OZ and vertical.

Tests are performed according to seismic spectra of components or seismic spectra of any project.





Seismic spectra for any project - horizontal Required Response Spectrum (RRS) spectra at S1 and S2 levels at 5% damping Seismic spectra for any project - RRS vertical spectra at level S1 and S2 at 5% damping



Seismic spectra of components - horizontal and vertical spectra

Framatome is an international leader in nuclear energy recognized for its innovative, digital and value added solutions for the global nuclear fleet. With worldwide expertise and a proven track record for reliability and performance, the company designs, services and installs components, fuel, and instrumentation and control systems for nuclear power plants. Its more than 20,000 employees work every day to help Framatome's customers supply ever cleaner, safer and more economical low-carbon energy.

Visit us at: www.framatome.com and follow us on X and LinkedIn.

Framatome is owned by the EDF Group (80.5%) and Mitsubishi Heavy Industries (MHI – 19.5%)



Scan this QR Code to learn more about our Solutions Portfolio

### framatome

Framatome Tour AREVA - 1 place Jean Millier 92400 Courbevoie, France

ic@framatome.com communication@framatome.com www.framatome.com

TELEPERM XS® is a registered trademark of Framatome or its subsidiaries, in the U.S. and other countries. The data and information contained herein are provided solely for illustration and informational purposes and create no legal obligations by Framatome. None of the information or data is intended by Framatome to be a representation or a warranty of any kind, expressed or implied, and Framatome assumes no liability for the use of or reliance on any information or data disclosed in this document. Property of Framatome or its affiliates. photos: © Framatome © Framatome 2025. A3026-B-US-G-EN-809-02-25-ExcoreNeutronDetectors